skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Eldeeb, Safaa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract Autism spectrum disorder (ASD) is a neurodevelopmental disorder that is often accompanied by impaired emotion regulation (ER). There has been increasing emphasis on developing evidence-based approaches to improve ER in ASD. Electroencephalography (EEG) has shown success in reducing ASD symptoms when used in neurofeedback-based interventions. Also, certain EEG components are associated with ER. Our overarching goal is to develop a technology that will use EEG to monitor real-time changes in ER and perform intervention based on these changes. As a first step, an EEG-based brain computer interface that is based on an Affective Posner task was developed to identify patterns associated with ER on a single trial basis, and EEG data collected from 21 individuals with ASD. Accordingly, our aim in this study is to investigate EEG features that could differentiate between distress and non-distress conditions. Specifically, we investigate if the EEG time-locked to the visual feedback presentation could be used to classify between WIN (non-distress) and LOSE (distress) conditions in a game with deception. Results showed that the extracted EEG features could differentiate between WIN and LOSE conditions (average accuracy of 81%), LOSE and rest-EEG conditions (average accuracy 94.8%), and WIN and rest-EEG conditions (average accuracy 94.9%). 
    more » « less
  2. null (Ed.)
  3. Abstract Trial-by-trial texture classification analysis and identifying salient texture related EEG features during active touch that are minimally influenced by movement type and frequency conditions are the main contributions of this work. A total of twelve healthy subjects were recruited. Each subject was instructed to use the fingertip of their dominant hand’s index finger to rub or tap three textured surfaces (smooth flat, medium rough, and rough) with three levels of movement frequency (approximately 2, 1 and 0.5 Hz). EEG and force data were collected synchronously during each touch condition. A systematic feature selection process was performed to select temporal and spectral EEG features that contribute to texture classification but have low contribution towards movement type and frequency classification. A tenfold cross validation was used to train two 3-class (each for texture and movement frequency classification) and a 2-class (movement type) Support Vector Machine classifiers. Our results showed that the total power in the mu (8–15 Hz) and beta (16–30 Hz) frequency bands showed high accuracy in discriminating among textures with different levels of roughness (average accuracy > 84%) but lower contribution towards movement type (average accuracy < 65%) and frequency (average accuracy < 58%) classification. 
    more » « less